Cadmium(II) Complexes of Cytosine

Tecla Pizzino*, Alberta Fontana, and Francesco Maggio

Dipartimento di Chimica Inorganica, Università di Palermo, I-90123 Palermo, Italy

Summary. Complexes of cadmium(II) with cytosine obtained from aqueous or physiological solutions at room temperature are reported. The complexes were characterized by spectroscopic, conductometric, ${}^{1}H\text{-NMR}$, and ${}^{13}C\text{-NMR}$ measurements and also by thermogravimetry.

Keywords. Cytosine; Complexes; Coordination sites; Cadmium(II).

Cadmium(II)-Komplexe von Cytosin

Zusammenfassung. Es wird über Komplexe von Cadmium(II) mit Cytosin berichtet, die aus wäßrigen oder physiologischen L6sungen erhalten wurden. Die Komplexe wurden mittels spektroskopischer Methoden, Konduktometrie, ¹H- und ¹³C-NMR-Messungen und mittels Thermogravimetrie charakterisiert.

Introduction

In a previous communication [1] we have reported the interaction of adenine with cadmium(II) salts. We found that this ligand exibits different coordination modes with different cadmium salts, showing a preferential tendency to give chloridecomplexes in presence of this ion. The main objective of the present study has been to prepare some cadmium(II)-cytosine complexes in order to see if also this ligand behaves differently towards different cadmium salts.

Up to date one cadmium-cytosine complex [2] and some complexes between cadmium(II) ions and cytosine derivatives as 1-methyl-cytosine [3] and cytidine-5' monophosphate [4-6] have been obtained and investigated.

Experimental

All the chemical products used were reagent grade and were used without purification. The complexes were obtained at room temperature (25-37°C) by mixing unsatured solutions of cytosine (Cyt) (in order to avoid its precipitation) and of cadmium(II) chloride or sulfate or nitrate, being 1 : 2 the metal-ligand ratio. As solvent it was used water or 0.9% aqueous NaC1 solution, as medium simulating physiological conditions. The complex formation is rather slow and solid compounds were obtained after storing the solutions in closed Erlenmeyer flasks (to avoid the solvent evaporation) for several days or weeks. The precipitates were filtered in vacuum, washed repeatedly with water, air dried by suction and stored in vacuo over silica gel. Because their slow precipitation or also decomposition the compounds were recrystallized only sometimes from aqueous solutions (for example the compound obtained in

physiological solution from sulfate, after recrystallization contains more cytosine: found C 24.95; H 3.42; N 21.32).

All of them were characterized by elemental analysis, IR spectra, thermogravimetry (TG), conductivity measurements and 1 H-NMR, 13 C-NMR and electronic spectra.

Elemental analyses of C, H and N were carried out at the Organic Chemistry Institute of Milan University, while chlorine was determined by potentiometric titration following the destruction of the organic moiety by the oxygen flask method.

IR spectra were recorded on a Perkin-Elmer 983 G spectrophotometer in the wavenumber range $4000-200$ cm^{-1}, using CsI cells, in nujol or hexachlorobutadiene mulls.

TG measurements were carried out with a Mettler TA3000 System in pure nitrogen atmosphere. The molar conductivities were measured on a Crison conductimeter 522 at $25 + 0.1$ °C.

Conductivity grade water and doubly distilled dimethylsulfoxide *(DMSO)* were used as solvents.

1H-NMR and 13C-NMR spectra were run on a Bruker WP 80 spectrometer, deuterated *DMSO* being used as solvent and $(CH_3)_4Si$ as internal standard.

Electronic absorbance spectra were recorded on a Beckmann DU 7 spectrophotometer, in the wavelength range 350-200nm, using aqueous solutions and quartz cells of 1.000, 2.000 and 10.000 cm.

Results and Discussion

All cadmium(II) salts used give after reaction with cytosine in 0.9% aqueous NaCl solution the differently hydrated complexes $Cd(C_4H_3N_3O)$. Cl₂ (CdCyt₂Cl₂) being only weakly soluble both in water and in *DMSO.* When the reaction was carried out in absence of NaC1 the compounds obtained with cadmium chloride, sulfate, or nitrate were $CdCyt_2Cl_2 \tcdot 2H_2O$, $CdCyt_2SO_4 \tcdot 1.5H_2O$ and $CdCyt_4(NO_3)_2 \tcdot H_2O$, respectively. After recrystallization in aqueous medium, $CdCyt₂Cl₂ \cdot 2H₂O$ gives $CdCyt_2Cl_2$ or $CdCyt_2Cl_2 \tcdot 1.5H_2O$. All the complexes are white and have good crystalline forms [except $(CdCyt₂SO₄ · 1.5 H₂O)$], so X-rays measurements on them are in progress. Because the different metal-ligand ratio obtained in the nitratecomplex we prepared again this compound in the $2:1$ metal-ligand ratio obtaining a compound corresponding to $CdCyt_2(NO_3)$. 0.5 H₂O. Analytical data are reported in Table 1.

The IR spectra of all complexes are rather similar (Table 2). Bands attributable to stretching vibrations of water molecules are overlapping very probably with the rather broad ones of NH₂ and N₁--H groups [7-8]. The NH₂ stretching band outof-phase at $3\frac{370 \text{ cm}^{-1}}{1}$ in the spectrum of free cytosine (probably a composite one) splits, increases in frequency and sharpens in the spectra of the most complexes, being almost unperturbed in the spectra of $CdCV₁SO₄1.5H₂O$ and $CdCyt_{4}(NO_{3})$. H₂O; so the spectra of the complexes show two or more of these bands, one of them being very probably due to N_1 —H stretching vibration. The broad band $v_{\text{sym}}NH_2$ at 3 165 cm⁻¹, superimposed on the C--H stretching modes, is resolved in two or more bands, showing less strongly hydrogen-bonded $NH₂$ and N_1 —H groups in the complexes.

In the $1700-1600 \text{ cm}^{-1}$ range only a very broad composite band with several shoulders can be seen in the cytosine spectrum. The spectra of the complexes show also one or two rather broad composite bands falling in a position depending on the relative intensities of overlapping bands. Furthermore a new band, a bending vibration of H_2O , overlapping the others, must be present in this range in all but one spectra of the complexes, making it impossible to identify all the expected modes.

Compound	$C\%$	H%	$N\%$	Cl%	$H_2O\%$
	found	found	found	found	found
	(calcd.)	(calcd.)	(calcd.)	(calcd.)	(calcd.)
$CdCyt_2Cl_2$	23.06	2.42	20.28	17.73	0.00
	(23.69)	(2.48)	(20.72)	(17.48)	(0.00)
$CdCyt_2Cl_2 \cdot 0.5 H_2O$	22.76	2.72	19.86	18.00	0.00
	(23.18)	(2.67)	(20.27)	(17.11)	(2.17)
$CdCyt_2Cl_2 \cdot H_2O$	22.48	2.91	19.74	15.96	6.83
	(22.69)	(2.86)	(19.84)	(16.74)	(4.49)
$CdCyt_2Cl_2 \cdot 1.5H_2O$	22.01	2.98	19.28	16.29	3.81
	(22.22)	(3.03)	(19.43)	(16.39)	(6.25)
$CdCyt_2Cl_2 \cdot 2H_2O^a$	22.14	3.27	19.47	15.67	7.53
$CdCyt_2Cl_2 \cdot 2H_2O^a$	21.68	3.16	18.80	16.62	6.52
$CdCyt_2Cl_2 \cdot 2H_2O^a$	21.85	3.19	19.18	16.26	7.56
$CdCyt_2Cl_2 \cdot 2H_2O^a$	21.87	3.22	18.88	15.55	7.66
$CdCyt_2Cl_2 \cdot 2H_2O^a$	22.18	3.01	19.37	16.19	8.02
$CdCyt_2Cl_2 \cdot 2H_2O^a$	21.88	3.25	19.04	15.35	8.01
	(21.76)	(3.30)	(19.03)	(16.06)	(8.16)
$CdCyt2SO4 \cdot 1.5H2O$	20.81	2.87	18.21		5.29
	(20.99)	(2.86)	(18.26)		(6.27)
$CdCyt2(NO3)2 \cdot 0.5 H2O$	20.27	2.39	23.63		0.00
	(20.55)	(2.37)	(23.96)		(1.93)
$CdCyt_4(NO_3)_2 \cdot H_2O$	27.34	3.03	28.46		2.70
	(27.50)	(3.17)	(28.06)		(2.58)

Table 1. Analytical data of cadmium-cytosine compounds

^a Repeated preparations of the same compounds, eventually starting from different cadmium salts, gave consistent analytical results

Nevertheless, one can see generally a shift of the bands attributable to $C = O$ and $C_5 = C_6$ stretching modes at lower and higher wavenumbers, respectively. Drastic variations of the bands assigned to mixed vibrations involving both N_1 —H in plane deformation and ring stretching modes, to $C-H$ bending and out-of-phase deformation, and to the C--NH₂ stretching vibration $[7-10]$ and of bands in the **¹**250-440 cm -1 range, due to ring stretching or bending modes can be seen in the complexes spectra below 1600 cm^{-1} . This suggests a ring involvement in the complex-formation, very probably through $N(3)$, which is the most basic site [11]. The shift at higher frequency of the $C-NH_2$ vibration might be due to a greater participation of the nitrogen electron pair to the resonance structures of the ligand ring according to the structures suggested for the zinc complex [12].

The IR spectra of the complexes give little other informations. A band attributable to $v(Cd-Cl)$ is observed at 215 cm^{-1} only in the spectrum of

560 m
553 m

Cyt	CdCyt ₂ Cl ₂	$CdCyt_2Cl_2 \cdot 0.5H_2O$	$CdCyt_2Cl_2H_2O$	$CdCyt_2Cl_2 \cdot 1.5H_2O$
1700 sh, m 1660 vs, b	1720 sh, s 1668 sh, s	1680 vs		
1635sh, vs) 1615sh, s	1620 vs, vb	1650 sh, vs 1620 vs	1644 vs, b 1611 vs, b	1620 vs, vb
1540s 1 504 s	1 525 sh, ms 1505 ms	1565 w 1 502 vs $\sqrt{ }$	$1501 \,\mathrm{m}, \mathrm{b}$	1525 sh, ms 1504s
1465 vs, b	1453m 1442 _m	1473 m 1445m	1443 ms	1444 s
1 362 vs	1378m, b 1360 mw	1 364 m	1 369 ms	1370 ms
1275s	N $1303 \,\mathrm{mw}$ l 1 285 mw	1288 mw	1304 m l 1 280 w	1 305 m 1288 mw
1232s, b	1 245 mw 1216 ms	1243 m 1221s	1233 ms	1 246 sh, mw 1232 ms 1217s
1012 mw 965 m	976 mw, b	1008w 979 m	$973 \,\mathrm{m}, \mathrm{b}$	976 mw
820 ms, b	850w	$873 \,\mathrm{m}$, b	$852 \,\mathrm{m}, \mathrm{b}$	$853 \,\mathrm{m}, \mathrm{b}$
792 s	811 sh, m 800 sh, m 793 ms	819 vs 795 s J	806 ms	$803 \,\mathrm{m}$, b
600 s	608 s	611s	600 ms	609 ms 601 ms
570 mw	$578\,\mathrm{m}$	564 ms	570 m	578 m

Table 2. Some meaningful infrared absorption frequencies $(cm⁻¹)$ of cytosine and its cadmiumcomplexes^a

^a s, strong; m, medium; w, weak; b, broad; sh, shoulder; v stretching mode; δ bending mode; γ out-ofplane bending; sk, skeletal

 548 s 560 ms 548 ms 556 m 553 m

 440 s 438 m 438 m 438 ms 438 w 435 mw

 b Band assignments as in Refs. [7-8, 15-16, 19-20]</sup>

 $CdCyt₂Cl₂·2H₂O$. A band at about 260 cm⁻¹ appearing in almost all the complexes cannot be attributed to a $v(Cd-Cl)$ stretching vibration. So very probably the chloro-complexes have distorted octahedral structures with the chlorine atoms in bridging positions [13-14]. In the spectrum of the sulfate-complex strong bands v_1 , v_2 , v_3 , and v_4 due to the sulfate group are observed, the v_1 vibration overlapping with one of the ligands [15-16]. The appearance of these bands supports a lowering of the sulfate symmetry probably due to interactions both with water molecules and cadmium ions. The band at 678 cm^{-1} could be probably a Cd—OH vibration $\lceil 16 - 17 \rceil$, and that at 820 cm⁻¹ a wagging vibration mode of coordinated water [18]. It was possible to identify only one band surely due to the nitrate group in $CdCyt_{4}(NO_{3})$. H₂O, while a number of these band can be seen in the spectrum of $CdCyt₂(NO₃), 0.5 H₂O [19–20] (see Table 2).$

TG measurements on $CdCvt_2Cl_2 \cdot 2H_2O$ obtained from different cadmium salts (and repeated several times) show a water loss between 110 and 160°C, of two or less than two water moles per mole of complex (1.6-2.0 moles, being 1.9 the mean value). CdCyt₂Cl₂.0.5H₂O and CdCyt₂(NO₃)₂.0.5H₂O show no water loss, $CdCyt_2Cl_2 \cdot H_2O$ loses more than one water mole (1.6), probably because of absorbed water. CdCyt₂Cl₂ \cdot 1.5 H₂O and CdCyt₄(NO₃)₂ \cdot H₂O lose about one mole of water per complex (0.91 and 1.05 moles respectively), the two chloro-complexes between 113-150°C (similarly to the temperature range in which the CdCyt₂Cl₂ \cdot 2 H₂O is losing water), the nitrate-complex below 100^oC (55–95^oC), so that probably in these complexes the water does not coordinate to metal ion. In $CdCyt_2SO_4 \tcdot 1.5 H_2O$ it must be more strongly bonded and probably coordinated to cadmium ion, which is indicated by a loss of 1.34 water moles between $188-271^{\circ}$ C. TG measurements performed up to 410° C on the chloro-complexes show that they all decompose between 276-390°C losing about one cytosine mole per mole complex (1.00-1.17, being 1.05 the mean value). The residual product at 410° C could be partially decomposed CdCytCl₂ ($\frac{\%}{\%}$ calcd. 72.60, 71.02, 69.91, 68.07, and 66.68, respectively; found 67.34, 69.61, 65.25, 65.19, and 63.40). The sulfatecomplex decomposes between 272-572°C losing about two cytosine moles per complex mole ($\%$ calcd. 48.55, found 44.29). The residual product at 600°C seems to be CdSO₄ ($\%$ calcd. 45.55; found 46.56). Also CdCyt₂(NO₃)₂·0.5 H₂O loses about two cytosine molecules in the temperature range 229-247°C, the found and the calculated percentual losses being 45.87 and 47.52, respectively. The residual compound at 400°C could be partially decomposed cadmium nitrate $\binom{0}{0}$ calcd. 50.56, found 47.59). CdCyt₄(NO₃), H₂O decomposes by losing more than two cytosine moles per complex mole between 244-373°C, the TG measurement being performed until 400°C. A comparison of the temperature ranges where the cytosine molecules are lost shows that they are less strongly bonded in $CdCyt₂(NO₃)₂ · 0.5 H₂O.$

In aqueous solution the chloride-complexes dissociate totally: UV measurements show only a band in the same position as the free ligand, the absorption index being about twice of that of cytosine $[(13.0 \pm 0.1) \cdot 10^3$ and $(6.3 \pm 0.1) \cdot 10^3 M^{-1}$ cm⁻¹ respectively] and conductivity measurements give values which, plotted versus the molar concentrations of $CdCl₂·2.5H₂O$ and of the chloride-complexes, fall on a single curve (Fig. 1); the conductivity of cytosine is very low and can be disregarded. The dissociation of $CdCyt_2SO_4 \cdot 1.5 H_2O$ in aqueous solution seems to be not total and it increases with dilution because the λ_M values are only for dilute solutions the same like those of $C dSO_4$ (less than $4 \cdot 10^{-5} M$) but they decrease for higher concentrations with respect to the CdSO₄ λ_M values (Fig. 1). Moreover, the UV spectra of this complex show a band at 266.5nm with an absorption index of $(12.0 \pm 0.1) \cdot 10^3 M^{-1}$ cm⁻¹, less than twice that of cytosine. Also, the UV spectra of aqueous solutions of $CdCyt₄(NO₃)₂·H₂O$ and $CdCyt_{2}(NO_{3})_{2}\cdot 0.5 H_{2}O$ show absorption indices less than four and two times to that of free ligand $[(23.6 \pm 0.1) \cdot 10^{3} M^{-1} \text{ cm}^{-1}$ and $(11.3 \pm 0.5) \cdot 10^{3} M^{-1} \text{ cm}^{-1}$, respectively] the complexes being probably partially dissociated in this solvent. The partial dissociation of these complexes is confirmed by conductivity measurements in water. We cannot compare their molar conductivities with that of cadmium nitrate, which is so hygroscopic that it was impossible to obtain standard solutions of it. However, we can observe very high λ_M values falling on two little different

Fig. 1. Molar conductivities, λ_M , vs. concentration measured in *DMSO* $(a-d)$ or water $(e-i)$; curve a: cadmium chloride complexes of cytosine; curve b: $CdCl₂ \cdot 2.5 H₂O$; curve c: $CdCyt_2(NO_3)_2 \cdot 0.5H_2O;$ curve d: $CdCvt_4(NO_3)$, $\cdot H_2O$; curve e: CdCyt₂SO₄ \cdot 1.5H₂O; curve f: $3 \text{CdSO}_4 \cdot 8 \text{H}_2\text{O};$ curve g: $CdCyt₂(NO₃)₂ \cdot 0.5 H₂O$; curve h: $CdCl₂ \cdot 2.5 H₂O$ and cadmium chloride complexes of cytosine; curve i: $CdCyt_4(NO_3)_2 \cdot H_2O$

curves for both complexes (conductivity values of $CdCyt_4$ ⁺⁺ and $CdCyt_2$ ⁺⁺ must be enough different, in spite of a different solvatation grade of the two ions).

The conductivities of $CdCyt_2SO_4 \tcdot 1.5 H_2O$ and of cadmium sulfate could not be measured in *DMSO* because of their very low solubility. Conductivity measurements on CdCl₂.2.5 H₂O and on the chloro-complexes in this solvent show λ_M values falling on two different curves and only at concentration values higher than 8.10^{-4} M the two curves overlap each other, suggesting a partial dissociation involving only the Cd--C1 bond rupture in both cases. Due to the different conductivity of Cd⁺⁺ and CdCyt₂⁺⁺ ions, the separation between the two curves increases with dilution as the amount of ions increases in the solutions. $CdCyt_{4}(NO_{3})$ ² H₂O and CdCyt₂(NO₃)₂ 0.5 H₂O show high conductivity values in *DMSO* solutions, the first complex being more dissociated than the second (Fig. 1). Therefore it follows that in *DMSO* very probably the Cd--Cyt bonds persist. Also different values of chemical shifts are found in NMR measurements for cytosine and its cadmium complexes. Only one set of base peaks can be seen in all ¹H-NMR and $13C-NMR$ spectra confirming that no break of the cytosine-cadmium ion bonds takes place. Because of its very poor solubility the 1H-NMR spectra of $CdCyt_2SO_4 \cdot 1.5H_2O$ were performed on saturated solutions and ¹³C-NMR spectra could not be measured. Chemical shift values are reported in Table 3. We performed measurements on solutions of cytosine at different concentrations and found a linear correlation between chemical shifts of protons and concentration values: $\delta = 5.515 + 0.276 \cdot m$, $\delta = 7.247 + 0.322 \cdot m$, $\delta = 6.922 + 1.447 \cdot m$, and $\delta = 10.268 - 0.964 \cdot m$ for C₅-H, C₆-H, NH₂ and N₁-H respectively (δ values of C_5 —H and C_6 —H concern the first peack of two signals). Similar linear relations can

Compound	m	δ C5-H	δ NH ₂	δ C6-H	$\delta N1-H$	J_{5-6}	J_{6-5}
Cytosine	0.0270	5.524	6.962	7.257	10.23	0.088	0.087
		5.612		7.344			
$CdCyt_2Cl_2$	0.0116	5.578	$7.15^{\rm a}$	7.314	10.49	0.087	0.088
		5.665		7.402			
$CdCyt_2Cl_2 \cdot 0.5H_2O$	0.0198	5.614	7.30 ^a	7.349	10.58	0.088	0.088
		5.702		7.437			
$CdCyt_2Cl_2 \cdot H_2O$	0.0124	5.661	7.20 ^a	7.316	10.5^{b}	0.088	0.088
		5.749		7.404			
$CdCyt_2Cl_2 \cdot 2H_2O$	0.0259	5.628		7.364	10.64	0.088	0.088
		5.716		7.452			
$CdCyt2(NO3)2 \cdot 0.5 H2O$	0.0307	5.778	7.72 ^a	7.494	10.86	0.088	0.088
		5.866		7.582			
$CdCyt_{4}(NO_{3}), H_{2}O$	0.0141	5.573	7.06	7.302	10.45	0.087	0.087
		5.660		7.389			
$CdCyt_2SO_4 \cdot 1.5H_2O$	< 0.005	5.534	7.014	7.268	10.31	0.088	0.085
		5.622		7.353			

Table 3. ¹H-NMR spectra of cytosine and its cadmium complexes in *DMSO* solution (δ is in ppm downfield from internal *TMS)*

a Shoulder not well-defined

b Very broadened peak

be found also for C₅---H and C₆---H protons of chloro-complexes: $\delta = 5.524$ $+ 4.309 \cdot m$ and $\delta = 7.270 + 3.703 \cdot m$, respectively. As can be seen, these chemical shift values are much more concentration-dependent. The $NH₂$ signal, falling under that of C_6 —H in the spectra of chlorocomplexes, is often not visible at all or it shows up as an unresolved shoulder. The more pronounced downfield positions must be due to more important base-base interactions in the cytosine molecules which are cadmium-bonded in the complexes. The values of $NH₂$ chemical shifts could be measured only for solutions less than $0.02m$ and are very much concentrationdependent: $\delta = 6.940 + 17.078 \cdot m$. The similar shifts of C₅—H and C₆—H signals and the constant values of the proton coupling constant J for both free ligand and chloro-complexes show that the metal ion must be bound equally apart from 5- and 6-positions, supporting N_3 as coordination site in these complexes. The spectrum of a satured solution of $CdCyt_2SO_4 \cdot 1.5 H_2O$ in *DMSO* shows little downfield shifts more pronounced for nitrogen-bonded protons, but more meaningful differences in the spectrum shape, the NH₂ peak being well-defined and the C_6 —H signals less sharp (Fig. 2). 'H-NMR spectra of nitrate complexes show a different coordination mode: remarkable downfield shifts are observed for $CdCyt_2(NO_3)_2 \cdot 0.5H_2O$, the $NH₂$ signal being downfield from the C₆-H signal and little differences being

Fig. 2. Proton chemical shifts of cytosine (a), $CdCyt_2Cl_2 \cdot H_2O$ (b), $CdCyt_2SO_4 \cdot$ 1.5 H₂O (c), CdCyt₂(NO₃)₂ · 0.5 H₂O (d) and $CdCyt_4(NO_3)_2 \cdot H_2O$ (e)

observed for $CdCyt_4(NO_3)_2 \cdot H_2O$. The ¹³C-NMR spectra of cytosine are little **dependent from concentration. In the 13C-NMR spectra of the complexes the signals** show small shifts from those of the ligand $[21]$, the C_2 and C_4 signals being shifted upfield, C_5 and C_6 downfield and more pronouncedly shifted, especially in the **nitrate-complexes. Any way, it is possible reject the oxygen as coordination site being the shifts rather small. The different chemical shifts confirm the assumption of a different coordination mode in the two nitrate-complexes, probably the nitrate ion** being cadmium-bonded in $CdCyt_2(NO_3)_2 \cdot 0.5H_2O$, which is not the case in $CdCvt_4(NO_3)$, $\cdot H_2O$.

In conclusion, taking into consideration all presented data, it is possible to suppose an octahedral coordination in the chloro-complexes through two cytosine molecules and four bridging-chloride ions, the water molecules being only hydrogen-bonded. While the cadmium ion in $CdCyt_2SO_4 \tcdot 1.5H_2O$ and in $CdCyt₂(NO₃)₂ \cdot 0.5 H₂O$ binds two cytosine molecules through N₃ and also oxygens **of the water molecules and of the sulfate group in the first and of nitrate ion in the second complex, both having probably polymeric structures. At last, in** $CdCyt_{4}(NO_{3})$ ¹ $H_{2}O$ the four cytosine molecules are cadmium-bonded and probably **prevent any other interaction. We feel that in this case the cadmium ion must exhibit a tetracoordination.**

Because the cytosine moieties in *DNA* **or** *RNA* **molecules are bonded through N1, eventually present cadmium ions can still bind these ligands. Actually, cadmium ions were found** *DNA-bonded* **in most cellular extracts.**

References

- [1] Fontana A., Maggio F., Pizzino T. (1987) J. Inorg. Biochem. 29:165
- [2] Sakaguchi T., Fujita T. (1977) Yakugaku Zasshi 97:65
- [3] Gagnon C., Beauchamp A. (1979) Can. J. Chem. **57**: 1372
- [4] Clark G. R., Orbell J. D. (1975) J. C. S. Chem. Comm.: 697
- [5] Clark G. R., Orbell J. D. (1978) **Acta Cryst.** B34:1815
- [6] Shiba J. K., Bau R. (1978) Inorg. Chem. 17:3484
- [7] Susi H., Ard J. S., Purcell J. M. (1973) **Spectrochim. Acta** 29A: 725
- [8] Nishimura Y., Tsuboi M. (1985) Chem. Phys. 98:71
- [9] Angell C. L. (1961) J. Chem. Soc.: 504
- [10] Tsuboi M., Kyogoku Y., Shimanouchi T. (1962) Biochim. **Biophys. Acta 55:1**
- [11] Pullmann A., Pullmann B. (1980) J. Quantum Chem.: Quantum Biol. Symp. 7: 245
- [12] Wang S. M., Li N. C. (1968) J. Am. Chem. Soc. 90: 5069
- [13] Coates G. E., Ridley D. (1964) J. Chem. Soc.: 166
- [14] Goggin P. L., Goodfellow R. J., Kessler K. (1977) J. Chem. Soc. Dalton: 1914
- [15] Nakarnoto K., Fujita J., Tanaka S., Kobayashi M. (1957) J. Am. Chem. Soc. 79:4904
- [16] Ferraro J. R., Walker A. (1965) J. Chem. Phys. 42:1278
- [17] Nakagawa I., Shimanouchi T. (1964) **Spectrochim. Acta** 20:429
- [18] Nakamoto K. (1963) **Inorganic Compounds, Part II. In: Infrared Spectra of Inorganic and Coordination Compounds. Wiley, New York, sect.** II-3, p. 418
- [19] Gatehouse B. M., Livingstone S. E., Nyholm R. S. (1957) J. Chem. Soc.: 4222
- [20] Addison C. C., Sutton D. (1967) Prog. Inorg. Chem. 8: 195
- [21] Matczak-Jon E., Jezowska-Trzebiatowska B., Kozlowski H. (1980) J. Inorg. Biochem. 12:143

Received August 10, 1988. Accepted November 24, 1988